Bayesian Network Tutorial Introduction

David Albrecht
Monash University

Overview

- Cancer Treatment
- Bayesian Networks
- Independence
- Types of Inference
- Types of Evidence
- Extensions

Cancer Test

Suppose there is a 8% chance that a person has cancer. If they do have cancer there is a 90% the cancer test will be positive. While if they do not have cancer there is 91% chance the test will be negative.

Now suppose someone is told the test for cancer is positive. What is the chance they have cancer?

Cancer Test Network

Belief Bars

Adding Evidence

Inference

Computed using Bayes' Theorem

ABNMS 2011

Bayes' Theorem

Rev. Thomas Bayes

Pierre-Simon, (1749-1827)
$p($ Cancer \mid Test +$)=\frac{\text { \# People with Cancer } \& \text { Test }+}{\# \text { People with Test }+}$
$\#$ People with Cancer $=\#$ People $\times p($ Cancer $)$
\# People without Cancer $=\#$ People $\times p(\neg$ Cancer $)$
\# People with Cancer \& Test $+=$ \# People with Cancer $\times p($ Test $+\mid$ Cancer $)$
\# People without Cancer \& Test $+=\#$ People without Cancer $\times p($ Test $+\mid \neg$ Cancer $)$

$$
=\frac{p(\text { Cancer }) \times p(\text { Test }+\mid \text { Cancer })}{p(\text { Cancer }) \times p(\text { Test }+\mid \text { Cancer })+p(\neg \text { Cancer }) \times p(\text { Test }+\mid \neg \text { Cancer })}
$$

Bayesian Networks

Judea Pearl

- Has nodes and directed edges between nodes.
- Nodes represent features.
- Each feature can have multiple values
- Discrete or continuous
- Each node has a table that represent the chance of the value of the feature occurring, given the values of the parent nodes.
- No cycles are allowed.

Multiple paths ok but not cycles

Judea Pearl's Alarm Network

Causal Chains

$$
\text { Burglary } \longrightarrow \text { Alarm } \longrightarrow \text { John Calls }
$$

- If your belief in a Burglary occurring changes, then your belief in Alarm going off and consequently your belief that John will Call will change.
- If your belief that John will Call changes, then so does your belief in the Alarm going off and your belief that a Burglary has occurred.

Conditional Independence

Burglary \qquad Alarm John Calls

- If you know that the Alarm has gone off, then changes in belief of a Burglary occuring does not effect your belief in John Calls, and visaversa.
- Burglary is independent of John Calls given you know whether Alarm has gone off.

Common Causes

- If your belief in a John Calls changes then your belief in Alarm going off, and consequently your belief that Mary Calls changes.
- Also visa-versa.

Conditional Independence

- If you know whether Alarm has gone off, then your beliefs in John Calls and Mary Calls are independent, i.e., changing one does not change the other.

Common Effects

- If you don't know whether Alarm has gone off or not, then your beliefs in Burglary and Earthquake are independent, i.e., changing one does not change the other.

Conditional Dependence

- If you do know whether Alarm has occurred, then your beliefs of Burglary and Earthquake are dependent, i.e., changing one does change the other.
- Known as explaining away.

Types of Inference

- Diagnostic
- Casual
- Intercasual
- Mixed

Types of Evidence

- Specific evidence
- A definite finding that a node has a particular value.
- Negative evidence
- A definite finding that a node has not got a particular value.
- Likelihood (virtual evidence)
- Uncertain information about the values of a node.

Benefits of Bayesian Networks

- A visual representation of the relationships between attributes.
- Compact Representation of the joint probability distribution.
- Allows efficient belief updating.
- Correct probabilistic reasoning.

Extensions

- Dynamic Networks
- Used to model beliefs changing over time
- Hidden Markov Models and Kalman Filters are special cases.
- Decision Networks (Influence Diagrams)
- Used for decision making
- Object-oriented Bayesian networks
- Used to model large, complex hierarchical systems

Dynamic Bayesian Networks

(a) mainModel

(c) actionModel

(b) indepModel

(d) locationModel

Object Oriented Bayesian Network

ABNMS 2011
$3^{\text {rd }}$ Annual Conference of the Australasian Bayesian Network Modelling Society

Further Reading

- R.E. Neapolitan, "Learning Bayesian Networks", Pearson Education, Inc., 2004
- F.V. Jensen, "Bayesian Networks and Decision Graphs", SpringerVerlag, Inc., 2001
- K.B. Korb and A.E. Nicholson, "Bayesian Artificial Intelligence", Chapman \& Hall/CRC, Second Edition, 2011
- J. Pearl, "Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference", Morgan Kaufmann Publishers, 1988
- D. Koller and N. Friedman, "Probabilistic Graphical Models: Principles and Techniques", MIT Press, 2009

ABNMS 2011

